Importance Sampling and Adjoint Hybrid Methods in Monte Carlo Transport with Reflecting Boundaries

نویسندگان

  • Guillaume Bal
  • Ian Langmore
چکیده

Adjoint methods form a class of importance sampling methods that are used to accelerate Monte Carlo (MC) simulations of transport equations. Ideally, adjoint methods allow for zero-variance MC estimators provided that the solution to an adjoint transport equation is known. Hybrid methods aim at (i) approximately solving the adjoint transport equation with a deterministic method; and (ii) use the solution to construct an unbiased MC sampling algorithm with low variance. The problem with this approach is that both steps can be prohibitively expensive. In this paper, we simplify steps (i) and (ii) by calculating only parts of the adjoint solution. More specifically, in a geometry with limited volume scattering and complicated reflection at the boundary, we consider the situation where the adjoint solution “neglects” volume scattering, whereby significantly reducing the degrees of freedom in steps (i) and (ii). A main application for such a geometry is in atmospheric remote sensing. Volume scattering is then incorporated using an analog sampling algorithm (or more precisely a simple modification of analog sampling called a heuristic sampling algorithm) in order to obtain unbiased estimators. In geometries with weak volume scattering (with a domain of interest of size comparable to the transport mean free path), we demonstrate numerically significant variance reductions and speed-ups (figures of merit).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Monte Carlo–deterministic Methods for Reactor Analysis

A new variant of a hybrid Monte Carlo–deterministic approach for simulating particle transport problems is presented and compared to the SCALE FW-CADIS approach. The new approach, denoted as the SUBSPACE approach, improves the selection of the importance maps in order to reduce the computational overhead required to achieve global variance reduction—that is, the uniform reduction of variance ev...

متن کامل

Forward-Weighted CADIS Method for Global Variance Reduction

Recent applications’ needs/desires have motivated efforts to develop approaches for optimizing Monte Carlo calculations for global distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as response at multiple localized detectors and spectra. Recent efforts at Oak Ridge National Laboratory (ORNL) have led to the development of a variation on the Consistent Adjoint ...

متن کامل

Robust Monte Carlo Methods for Light Transport Simulation a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Light transport algorithms generate realistic images by simulating the emission and scattering of light in an artificial environment. Applications include lighting design, architecture, and computer animation, while related engineering disciplines include neutron transport and radiative heat transfer. The main challenge with these algorithms is the high complexity of the geometric, scattering, ...

متن کامل

Monte Carlo inference via greedy importance sampling

We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few ...

متن کامل

Improved Monte Carlo Variance Reduction for Space and Energy Self-Shielding

Continued demand for accurate and computationally efficient transport methods to solve optically thick, fixed-source transport problems has inspired research on variance-reduction (VR) techniques for Monte Carlo (MC). Methods that use deterministic results to create VR maps for MC constitute a dominant branch of this research, with Forward Weighted–Consistent Adjoint Driven Importance Sampling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010